

Object Detectors Emerge in Deep Scene CNNs

Bolei Zhou,

Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba

Massachusetts Institute of Technology

CNN for Object Recognition

Large-scale image classification result on ImageNet

How Objects are Represented in CNN?

DrawCNN: visualizing the units' connections

How Objects are Represented in CNN?

Zeiler, M. et al. Visualizing and Understanding Convolutional Networks, ECCV 2014.

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-rate object detection and semantic segmentation. CVPR 2014

Back-propagation

Strong activation image

Simonyan, K. et al. Deep inside convolutional networks: Visualising image classification models and saliency maps. ICLR workshop, 2014

Object Representations in Computer Vision

Part-based models are used to represent objects and visual patterns.

-Object as a set of parts

-Relative locations between parts

Figure from Fischler & Elschlager (1973)

Object Representations in Computer Vision

Constellation model

Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

Bag-of-word model

Lazebnik, Schmid & Ponce(2003), Fei-Fei Perona (2005)

Deformable Part model

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan (2010)

Class-specific graph model

Kumar, Torr and Zisserman (2005), Felzenszwalb & Huttenlocher (2005)

Learning to Recognize Objects

Possible internal representations:

- Object parts
- Textures
- Attributes

How Objects are Represented in CNN?

CNN uses distributed code to represent objects.

Agrawal, et al. Analyzing the performance of multilayer neural networks for object recognition. ECCV, 2014 Szegedy, et al. Intriguing properties of neural networks.arXiv preprint arXiv:1312.6199, 2013. Zeiler, M. et al. Visualizing and Understanding Convolutional Networks, ECCV 2014.

Scene Recognition

Given an image, predict which place we are in.

Bedroom

Harbor

Learning to Recognize Scenes

bedroom

Possible internal representations:

- Objects (scene parts?)
- Scene attributes
- Object parts
- Textures

CNN for Scene Recognition

Places-CNN: AlexNet CNN on 2.5 million images from 205 scene categories.

	Places 205	SUN 205
Places-CNN	50.0%	66.2%
ImageNet CNN feature+SVM	40.8%	49.6%

Scene Recognition Demo: 78% top-5 recognition accuracy in the wild

Predictions:

- type: indoor
- semantic categories: coffee_shop:0.47, restaurant:0.17, cafeteria:0.08_food_court:0.06

Predictions:

- type: indoor
- semantic categories: conference_center:0.51, auditorium:0.12, office:0.08,

http://places.csail.mit.edu

Zhou, et al. NIPS, 2014.

ImageNet CNN and Places CNN

Data-Driven Approach to Study CNN

Neuroscientists study brain

 \mathcal{D}

200,000 image stimuli of objects and scene categories (ImageNet TestSet+SUN database)

Estimating the Receptive Fields

Segmentation using the RF of Units

More semantically meaningful

Top ranked segmented images are cropped and sent to Amazon Turk for annotation.

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%

Pool5, unit 13; Label: Lamps; Type: object; Precision: 84%

Pool5, unit 77; Label:legs; Type: object part; Precision: 96%

Pool5, unit 112; Label: pool table; Type: object; Precision: 70%

Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%

Distribution of Semantic Types at Each Layer

Histogram of Emerged Objects in Pool5

Histogram of Emerged Objects in Pool5

Buildings

56) building

120) arcade

8) bridge

123) building

119) building

9) lighthouse

Furniture

18) billard table

155) bookcase

116) bed

38) cabinet

85) chair

People

person

49) person

138) person

100) person

Lighting 55) ceiling lamp

174) ceiling lamp

223) ceiling lamp

13) desk lamp

Nature

195) grass

89) iceberg

140) mountain

159) sand

Evaluation on SUN Database

Evaluate the performance of the emerged object detectors

Evaluation on SUN Database

Conclusion

We show that object detectors emerge inside a CNN trained to classify scenes, without any object supervision.

Object detectors for free!

Places database, Places CNN, and unit annotations could be downloaded at http://places.csail.mit.edu