------------ Options ------------- aspect_ratio: 1.0 batchSize: 1 checkpoints_dir: ./checkpoints dataroot: datasets/horse2zebra dataset_mode: unaligned display_id: 1 display_port: 8097 display_single_pane_ncols: 0 display_winsize: 256 fineSize: 256 gpu_ids: [0] how_many: 50 identity: 0.0 input_nc: 3 isTrain: False loadSize: 286 max_dataset_size: inf model: cycle_gan nThreads: 2 n_layers_D: 3 name: horse2zebra_cyclegan ndf: 64 ngf: 64 no_dropout: True no_flip: False norm: instance ntest: inf output_nc: 3 phase: test resize_or_crop: resize_and_crop results_dir: ./results/ serial_batches: False which_direction: AtoB which_epoch: latest which_model_netD: basic which_model_netG: resnet_9blocks -------------- End ---------------- CustomDatasetDataLoader dataset [UnalignedDataset] was created cycle_gan ---------- Networks initialized ------------- ResnetGenerator ( (model): Sequential ( (0): ReflectionPad2d (3, 3, 3, 3) (1): Conv2d(3, 64, kernel_size=(7, 7), stride=(1, 1)) (2): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (5): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False) (6): ReLU (inplace) (7): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (8): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (9): ReLU (inplace) (10): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (11): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (12): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (13): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (14): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (15): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (16): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (17): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (18): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (19): ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1)) (20): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False) (21): ReLU (inplace) (22): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1)) (23): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False) (24): ReLU (inplace) (25): ReflectionPad2d (3, 3, 3, 3) (26): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1)) (27): Tanh () ) ) Total number of parameters: 11378179 ResnetGenerator ( (model): Sequential ( (0): ReflectionPad2d (3, 3, 3, 3) (1): Conv2d(3, 64, kernel_size=(7, 7), stride=(1, 1)) (2): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (5): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False) (6): ReLU (inplace) (7): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (8): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (9): ReLU (inplace) (10): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (11): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (12): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (13): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (14): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (15): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (16): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (17): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (18): ResnetBlock ( (conv_block): Sequential ( (0): ReflectionPad2d (1, 1, 1, 1) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) (3): ReLU (inplace) (4): ReflectionPad2d (1, 1, 1, 1) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False) ) ) (19): ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1)) (20): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False) (21): ReLU (inplace) (22): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1)) (23): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False) (24): ReLU (inplace) (25): ReflectionPad2d (3, 3, 3, 3) (26): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1)) (27): Tanh () ) ) Total number of parameters: 11378179 ----------------------------------------------- model [CycleGANModel] was created process image... ['datasets/horse2zebra/testA/n02381460_1000.jpg']