Namespace(arch='wideresnet18', batch_size=200, data='/scratch/bzhou/places365_standard', epochs=90, evaluate=False, lr=0.1, momentum=0.9, num_classes=365, pretrained=True, print_freq=10, resume='', start_epoch=0, weight_decay=0.0001, workers=4) => creating model 'wideresnet18' DataParallel ( (module): ResNet ( (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU (inplace) (maxpool): MaxPool2d (size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1)) (layer1): Sequential ( (0): BasicBlock ( (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU (inplace) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) ) (1): BasicBlock ( (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU (inplace) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True) ) ) (layer2): Sequential ( (0): BasicBlock ( (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU (inplace) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) (downsample): Sequential ( (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) ) ) (1): BasicBlock ( (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU (inplace) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True) ) ) (layer3): Sequential ( (0): BasicBlock ( (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU (inplace) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) (downsample): Sequential ( (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) ) ) (1): BasicBlock ( (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU (inplace) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True) ) ) (layer4): Sequential ( (0): BasicBlock ( (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU (inplace) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (downsample): Sequential ( (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) ) ) (1): BasicBlock ( (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) (relu): ReLU (inplace) (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True) ) ) (avgpool): AvgPool2d (size=7, stride=7, padding=0, ceil_mode=False, count_include_pad=True) (fc): Linear (512 -> 365) ) ) THCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1502006348621/work/torch/lib/THC/generic/THCStorage.cu line=66 error=2 : out of memory Traceback (most recent call last): File "main_places365.py", line 288, in main() File "main_places365.py", line 131, in main train(train_loader, model, criterion, optimizer, epoch) File "main_places365.py", line 167, in train output = model(input_var) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 224, in __call__ result = self.forward(*input, **kwargs) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/parallel/data_parallel.py", line 58, in forward return self.module(*inputs[0], **kwargs[0]) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 224, in __call__ result = self.forward(*input, **kwargs) File "/data/vision/torralba/deepscene/small-projects/examples/imagenet/resnetdilated.py", line 146, in forward x = self.layer3(x) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 224, in __call__ result = self.forward(*input, **kwargs) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/modules/container.py", line 67, in forward input = module(input) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 224, in __call__ result = self.forward(*input, **kwargs) File "/data/vision/torralba/deepscene/small-projects/examples/imagenet/resnetdilated.py", line 49, in forward residual = self.downsample(x) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 224, in __call__ result = self.forward(*input, **kwargs) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/modules/container.py", line 67, in forward input = module(input) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 224, in __call__ result = self.forward(*input, **kwargs) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/modules/batchnorm.py", line 37, in forward self.training, self.momentum, self.eps) File "/data/vision/torralba/deepscene/lib/anaconda2/lib/python2.7/site-packages/torch/nn/functional.py", line 639, in batch_norm return f(input, weight, bias) RuntimeError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1502006348621/work/torch/lib/THC/generic/THCStorage.cu:66