# This implementation is based on the DenseNet-BC implementation in torchvision
# https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py

import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict


class _DenseLayer(nn.Sequential):
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
        self.add_module('norm.1', nn.BatchNorm2d(num_input_features)),
        self.add_module('relu.1', nn.ReLU(inplace=True)),
        self.add_module('conv.1', nn.Conv2d(num_input_features, bn_size *
                        growth_rate, kernel_size=1, stride=1, bias=False)),
        self.add_module('norm.2', nn.BatchNorm2d(bn_size * growth_rate)),
        self.add_module('relu.2', nn.ReLU(inplace=True)),
        self.add_module('conv.2', nn.Conv2d(bn_size * growth_rate, growth_rate,
                        kernel_size=3, stride=1, padding=1, bias=False)),
        self.drop_rate = drop_rate

    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return torch.cat([x, new_features], 1)


class _Transition(nn.Sequential):
    def __init__(self, num_input_features, num_output_features):
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm2d(num_input_features))
        self.add_module('relu', nn.ReLU(inplace=True))
        self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))


class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
            self.add_module('denselayer%d' % (i + 1), layer)


class DenseNet(nn.Module):
    r"""Densenet-BC model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 3 or 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
            (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
    """
    def __init__(self, growth_rate=12, block_config=(16, 16, 16), compression=0.5,
                 num_init_features=24, bn_size=4, drop_rate=0, avgpool_size=8,
                 num_classes=10):

        super(DenseNet, self).__init__()
        assert 0 < compression <= 1, 'compression of densenet should be between 0 and 1'
        self.avgpool_size = avgpool_size

        # First convolution
        self.features = nn.Sequential(OrderedDict([
            ('conv0', nn.Conv2d(3, num_init_features, kernel_size=3, stride=1, padding=1, bias=False)),
        ]))

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers=num_layers,
                                num_input_features=num_features,
                                bn_size=bn_size, growth_rate=growth_rate,
                                drop_rate=drop_rate)
            self.features.add_module('denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config) - 1:
                trans = _Transition(num_input_features=num_features,
                                    num_output_features=int(num_features
                                                            * compression))
                self.features.add_module('transition%d' % (i + 1), trans)
                num_features = int(num_features * compression)

        # Final batch norm
        self.features.add_module('norm_final', nn.BatchNorm2d(num_features))

        # Linear layer
        self.classifier = nn.Linear(num_features, num_classes)

    def forward(self, x):
        features = self.features(x)
        out = F.relu(features, inplace=True)
        out = F.avg_pool2d(out, kernel_size=self.avgpool_size).view(
                           features.size(0), -1)
        out = self.classifier(out)
        return out
